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SUMMARY 
The laminar convective flow and heat transfer in a duct with a trapezoidal cross-sectional area are studied 
numerically. The governing equations are solved numerically by a finite volume formulation in complex 
three-dimensional geometries using co-located variables and Cartesian velocity components. Details of the 
numerical method are presented. The accuracy of the method was also established by comparing the 
calculated results with the analytical and numerical results available in the open literature. The Nusselt 
numbers are obtained for the boundary condition of a uniform wall temperature whereas the friction factors 
are calculated for no-slip conditions at the walls. The asymptotic values of the Nusselt numbers, friction 
factors. incremental pressure drops, axial velocity and momentum rate and kinetic energy correction factors 
approach the available fully developed values. Various geometrical dimensions of the cross-section are 
considered. 
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INTRODUCTION 

Ducts with trapezoidal shapes are commonly used in regenerative heat exchanges. Such heat 
exchangers are employed in thermal power plants as preheaters and in air-conditioning systems 
as heat recovery units. The fluid flow in the ducts is three-dimensional, and owing to  the small 
hydraulic diameter of the duct, the Reynolds number becomes so small that laminar flow may 
prevail along the duct. 

Several studies of laminar and laminar fully developed flow in ducts with various cross-sections 
have been presented in the past. Patankar and Spalding' developed a calculation procedure in 
1972 for three-dimensional parabolic flows. This methodology was later used by Prakash and 
Lui' to study the forced convective flow and heat transfer in the entrance region of an internally 
finned circular duct. Karki and Patankar3 adopted this method in their studies of buoyancy 
effects in the entrance region of a shrouded fin array. In 1974 Shah4 adopted a least-squares 
matching technique to  analyse fully developed laminar flow and heat transfer in ducts of arbitrary 
cross-sections. Shah and London' in 1978 gathered a summary of the literature on heat transfer 
in laminar duct flow in a book. Baliga and Azrak,6 Kays and London,i Schmidt and Newell,' 
Sparrow and Haji-Sheikhg and Schneider and LeDain'O are a few more who have investigated 
three-dimensional laminar fully developed flow and heat transfer in ducts of triangular cross- 
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section. Faghri et dil in 1984 developed a numerical method which utilizes an algebraic co- 
ordinate transformation to map an irregular cross-section onto a rectangular one and adopts the 
calculation procedure for three-dimensional parabolic problems developed by Patankar et al. 
This method was used to investigate the three-dimensional laminar heat transfer and fluid flow 
characteristics in the entrance region of a regular polygonal duct12 and a rhombic duct.13 Zhang 
et all4 obtained hydrodynamically fully developed flow and developing temperature field in 
ducts with triangular and semicircular cross-sections. 

A literature survey of the available works points out the lack of thorough studies of three- 
dimensional laminar flow and heat transfer characteristics in the hydrodynamic and thermal 
entrance regions of trapezoidal ducts. 

The numerical method used in the present work is a finite volume method for elliptic flows in 
complex three-dimensional geometries which utilizes co-located variables and Cartesian velocity 
components. In this paper the method is applied to laminar forced convective flow and heat 
transfer in trapezoidal ducts. 

Numerical solutions were carried out for a uniform wall temperature at four values of the duct 
angle C#J and three values of the aspect ratio u. 

PROBLEM FORMULATION 

The trapezoidal duct to be studied is presented schematically in Figure 1. A symmetry surface 
divides the duct into two identical channels. Advantage is taken of this feature to limit the 
calculation domain to only half of the total cross-sectional area. The heat transfer and fluid flow 
characteristics for laminar, incompressible, forced convection in the entrance region are to be 
determined. The inlet conditions (uniform velocity and temperature) are also presented in the 
figure. The walls of the duct are kept at a uniform temperature. The axial velocity is in the 
x-direction. 

The governing equations are the continuity, momentum and energy equations. Consideration 
is given to simultaneously developing laminar flow. The flow is studied under the following 
assumptions: steady state, constant fluid properties, negligible viscous dissipation and no natural 
convection. The following dimensionless variables are introduced: 

The governing equations now take the following forms in a Cartesian co-ordinate system: 

a ui -=O, axi 

where r is equal to 1/Re in the momentum equations and to l/RePr in the energy equation. The 
source term S ,  is equal to aP/aXi in the momentum equations and to zero in the energy equation. 
The boundary conditions at the inlet of the duct are 

v= w=o, U = 1 (uniform), 0 = 0 (uniform). 

ui = 0, 0 = 1  (uniform). 
At the walls we have 
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Figure 1. Trapezoidal duct 

FLUID FLOW QUANTITIES 

Pressure drop 

The cross-sectional average pressure at any yz-plane is obtained by 

- CYPidAi 
P= 

A '  

where 6Ai is the area of the control volume face and A is the cross-sectional area. 
The local friction factor f at any cross-section is defined as5 

(3) 

In the fully developed region the local friction factor is inversely proportional to Re and ( fRe) , ,  is 
independent of x. The pressure drop in this region is caused only by the wall shear, whereas in the 
region of developing flow the pressure drop results from the wall shear as well as the change in 
momentum flow rate as the velocity profile develops. This latter contribution to the pressure drop 
is designated as the dimensionless incremental pressure drop number K ( x )  and is defined by 

The second term on the right-hand side of the above equation represents the pressure drop if the 
flow is fully developed immediately downstream of the inlet. 

In heat exchanger ducts the length of the ducts is usually several times the hydraulic diameter. 
Thus the ducts can be regarded as 'long ducts'. Therefore the knowledge of fully developed values 
of the friction factor& and K(co) is sufficient to establish the total pressure drop. Lundgren et al. 
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(see Reference 5 )  worked out an approximate analytical method to determine the incremental 
pressure drop in the fully developed region for ducts of arbitrary cross-section. The formula is 

Momentum rate 

obtained by4, 

where K , ( x )  is the momentum flux correction factor and is defined by 

The momentum rate in the main flow direction at any cross-sectional plane along the duct is 

MoR = Kd(x)p &A, (7) 

Kinetic energy 

duct is calculated by4, 
The kinetic energy of the fluid in the main flow direction at any cross-sectional plane along the 

(9) 
PU?n KE = K , ( X )  - A, 

2 

where Ke(x) is the kinetic energy correction factor and is defined by 

The fully developed value of the incremental pressure drop may also be written in the following 
form by considering equations (6), (8) and (10): 

K(m)=2CKe(m)-K,(m)l- (11) 
K(m) determined by the above equation is generally higher than that measured experimentally5 
and might also deviate from the value obtained using the exact method presented in equation (5). 

HEAT TRANSFER 

The heat transfer results are expressed in terms of the dimensionless Nusselt number. 

location x are defined as 
The local peripheral average Nu for non-circular ducts and the average Nu up to the axial 

Nu,,, = - = - 
k x  

Nu,dx, 

where (dT/dq),, represents the peripheral average temperature gradient at the wall. In equations 
(12) and (13) k is the thermal conductivity. The bulk temperature Tb at any axial location x is 
defined as 

I f  

~ ~ = l -  J uTdA. 
A 
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SOLUTION METHODOLOGY 

In order to extend the capabilities of the finite difference method to deal with complex geometries, 
a boundary-fitted co-ordinate method is used. 

The basic idea in this method is to map the complex flow domain in the physical space to a 
simple rectangular domain in the computational space by using a curvilinear co-ordinate 
transformation. In other words, the Cartesian co-ordinate system xi in the physical domain is 
replaced by a general non-orthogonal system ti. 

The momentum equations are solved for the velocity components U ,  V, W in the fixed 
Cartesian directions on a non-staggered grid. This means that all the variables are stored at the 
centre of the control volume. This method was suggested and worked out by Rhie and Chow” 
and later used by Burns and Wilkes,16 Majumdar,” Peric et al.’* and Miller and Schmidt.” 
Majumdar2’ later discussed the importance of underrelaxation in momentum interpolation when 
non-staggered grids are used. 

The steady transport equation for a general dependent variable Y in Cartesian co-ordinates 
can be written as 

a 
-(pu,~)=- ii ( r- a> +s ,  ax, 

where r is the exchange coefficient and is constant in this case. The total flux (convective and 
diffusive fluxes) is defined as 

ay I ~ =  pvi\y- r -. axi 
It is now convenient to write equation (15) in the equivalent form 

ai, 
ax, - = S  or  VI=S. (17) 

Integration of equation (17) over any control volume in the physical space, using Gauss’s law, 
gives 

I .dA= SdV. I b 
Equations (16) and (17) are used for performing the transformation to the computational space 
co-ordinates (general non-orthogonal co-ordinates) ti .  

The scalar advection-diffusion equation (18) is discretized. The integration of this gives 

(I * A), +(I. A), + (I. A), +(I * A), +(I * A),+@. A), = SSV, (19) 

where e, w, n, s, h and 1 refer to the faces of the control volume; see Figure 2. The discretized 
equation is rearranged in the standard form 

a p y p  = 1 a N B y N B  + S o  (20) 
where 

The coefficients a N B  contain the contributions due to convection and diffusion and the source 
terms S ,  and Sc contain the remaining terms. 
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Convection 

For the sake of conciseness and simplicity we restrict ourself in this and the following 
subsections only to the east face of the control volume for explanation of the numerical 
procedure. The total flux I contains convective and diffusive fluxes. The first term on the right- 
hand side of equation (16) is the convective term. The mass flow rate through the east face can be 
expressed as the scalar product of the velocity and area vectors multiplied by the density. Thus we 
have 

where the Cartesian areas are calculated by 
m e  = PeU * A =  P e ( U e A e x  + v c  A c y  + we A,,), (22) 

Acx=IAlen.e,, A,, = I Al,n *eyr A,, = I A (,n e,. (23) 
Here IAI, is the total area of the east face, n is its normal vector and e are the Cartesian base 
vectors. In order to obtain the velocity components on the control volume faces from those on the 
control volume centres, the Rhie-Chow IS interpolation method is used. In this method the 
weighted linear interpolation in physical space, u, =fXuE +(1 -f,.)up, is not used in order to avoid 
non-physical oscillations in pressure and velocity. The method can be described as follows. 
Consider the interpolation to the east face of a control volume centred at P; see Figure 3(a). The 
pressure gradient is subtracted from the velocity components stored at the centre of the control 
volumes: 

-(Pe - Pw)6 v 
IS1 (aP)P ’ 

- ( p e e  - P e  18 Y u;=uE- 
I@)I ( a P ) E  . 

u;=up- 

The velocity component on the east face is now calculated as 

u, =fxu; + (1 -fx)uOp + pressure gradient, 

where f x  is the interpolation factor and is calculated by 

IS1 
f x  =~T. 

lPel+le I 

north face TN 

Figure 2. A control volume 
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Figure 3(a). Grid nomenclature 
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Grid in x - direction 

Figure 3(b). A typical grid presentation 

P, ,  P ,  and Pee in equation (24) are calculated by linear interpolation. As seen from equation (25), 
the pressure gradient is now calculated using the adjacent nodes of the east face. This avoids any 
non-physical oscillations in the pressure field. u, and we are calculated in a similar manner. 

Diflision 

area A we have 

A * VY in equation (26) can for the east face be rewritten in Cartesian coordinates as 

The second term in the total flux Ii presented in equation (16) is the diffusion term. Through an 

(26) (I . A),,, = - TA * VY. 

and in general non-orthogonal co-ordinates as 

where gi is the covariant base vector. The appearance of the metric tensor gij in equation (28) is 
due to the fact that the components of the product A - g ,  and the derivative aY/atj are both 
covariant and the product of their contravariant base vectors is not zero for i # j  since they 
are non-orthogonal to each other.” The components of gij can be calculated as shown in 
Reference 21 for example. 

The normal vector n in equation (28) is equal to the cross-product of g, and g,, which implies 
that n.g,=n*g,=O. Equation (28) can now be written as 

for j =  1, 2, 3. 
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Pressure correction equation 

The pressure correction equation is obtained by applying the SIMPLEC algorithm” on the 
non-staggered grid. The mass flux rit is divided into one old value, m*, and another correction 
value, m‘. The mass flux correction at the east face can be calculated by 

m’,=pA.~’=p , (A , ,u :+A, ,~ : :+A, ,wb)=(pA.g juS) , ,  (30) 
where u; is the covariant correction velocity. The covariant velocity components are related to the 
pressure gradient byz3 

(31) 
1 aP 

a,axj 
u .=  ---. 

By introducing equation (3 1) into equation (30), we obtain 

1 apt 
mL = [ P A ,  ( -g gj)], = - ($ A - Vp’) e 

Consider for simplicity the continuity equation in one dimension: 

m = m - m  e w  =o. (33) 
If m=m* +tit’ and equation (32) are substituted into equation (33), we obtain 

(5 A .  A .  VP’),+*: -m:=o. (34) 

This is a diffusion equation for the pressure correction p’. A * Vp’ can be calculated with equation 
(29) by replacing Y by p’.  

COMPUTATIONAL DETAILS 

The solution methodology presented in the preceding section was transferred to a computer code 
called CALC-BFC. It was originally developed by D a ~ i d s o n ~ ~  but has been further developed in 
this work. The general structure of the code is similar to that of TEACHT and the equations are 
solved by a TDMA routine. 

Grid 

In order to investigate the grid size effect, computations were performed for 4 =45” and three 
different aspect ratios ct under various grid sizes. Comparison of the (fRe),, of each test and the 
values of Shah4 are presented in Table I. To maintain relatively moderate computing costs in the 
final calculations, a 20 x 21 grid was used for a = 0.5 and 1 and a 25 x 25 grid was chosen for ct = 2. 
In the main flow direction a non-uniform grid with 82 step sizes generated by a power law 
formula with higher concentration close to the inlet of the duct was employed. Each control 
volume contains one node at its centre, whereas the boundary adjacent volumes contain two 
nodes. A typical grid is shown in Figure 3(b). 

RESULTS AND DISCUSSION 

Hydrodynamic results 

Comparison with previous results. In Figure 4 the axial pressure distribution for 4 = 90°, a = 1 is 
compared with the experimental data of Beavers et ~ 1 . ’ ~  The computed results are in reasonable 
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Table I. Grid size effect on (fRe),, (4 =45") 

Grid points u = 0.5 a = l  u=2 

12x 12 14.825 13.260 12.709 
15x 15 14.983 13.424 13.04 1 
20 x 21 15,052 13.594 13.212 
25 x 25 15.145 13.782 13.234 
30 x 30 - - 13.307 

Shah4 15.206 13-827 13-364 

0 Experimental results 
of Beavers et al. [241 

2.00  4.00 6 00 8 . 0 0  

(x/DhRe) - lo2 
Figure 4. Comparison of the computed pressure drop with experimental data (4  = 90", a = 1) 

agreement with the experimental data. The (fRe)-values in the fully developed region agree well 
with the analytical values obtained by Shah.4 

Incremental pressure drop. The incremental pressure drop K ( x )  for different 4 and aspect 
ratios is plotted in Figure 5. K increases with the axial distance x and approaches asymptotically 
a constant value in the fully developed region as can be seen in Figure 5. K ( a )  represents the total 
incremental pressure drop due to the entrance effect and can be calculated either graphically by 
extrapolating the results in Figure 5 or by using equation (11); see Table 11. The values of K(co) 
obtained by these two methods are not in exact agreement with each other. This can be due to the 
fact that the method presented in equation (11) is an approximate method but also due to an 
insufficient number of grid points. 

Axial velocity vectors and contours. The velocity vectors of the cross-stream flow (secondary 
flow) for q5 =a", a = 1 are presented in Figure 6 at three different axial positions. As is evident, the 
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a = 0.5 

0.010 0.100 1 000 
x/Dh/Re 

2 -  

Y 

I t I t 1  I t I I I I I I I  I I 1 I t 1 1 1  

x/Dh/Re 
0.010 0.100 1.000 

Y 

2 

1 

0.010 0.108 1.000 
x/Dh/Re 

Figure 5. Incremental pressure drop K versus x/(D,/Re)  

cross-stream velocities become smaller as the fully developed region is approached. Comparison 
of velocity vectors for different and aspect ratios are presented in Figures 7 and 8 respectively. 
Figure 7 shows that the cross-stream velocity vectors of the trapezoidal duct with 9 = 30" are 
stronger than for the others and the strength of the velocity reduces as C#J increases. The figures 
show that the secondary flow is sucked towards the centre of the ducts. This can be explained as 
follows. The velocity gradient in the flow direction (centre part) is positive before reaching the 
fully developed region. In order to satisfy the continuity equation, the sum of the cross-stream 
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. . . . . . . . . . . . . .  

Figure 6. Velocity vectors at three axial positions (4 = 60"; a = 1) 

gradients must become negative and fill the 'vacuum' occurring due to the increase in the main 
stream velocity. 

The contours of the axial velocity at x/(D,Re)= 5.57 x lo-' are plotted in Figure 9. As seen 
from this figure, the axial velocity at the centre part of the cross-plane increases with increasing 
aspect ratio a. 

Momentum rate and kinetic energy. The variations of the momentum rate and kinetic energy 
along the axial length in the main flow direction are plotted in Figure 10. MoR and KE are 
greater than unity and 0.5 respectively for any non-uniform velocity distribution across the 
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Ql = 90 

8 =  60 

Q, = 45  

8 = 3 0  

I 

. . . _ _ _ _ _ _ _ _ _ _  

Figure 7. Velocity vectors for various 4-values (a=0.5, x/(D,/Re)=4.64 x W 3 )  
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a = 0.5 

a =  1 

a= 2 

. . . . . . . . . . . . .  

. .  . . - . . - - - .  

\ I. ...................... I ! \ \ \ \ \\\\\\\?S?%\\s.\\ \ 

Figure 8. Velocity vectors for various aspect ratios (4=60", x/(D,/Re)=4.64 x 
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a = 0.5 

a= 2 

551 

Figure 9. Axial velocity contours (4=60", x/(D,/Re)=5-57 x lo-*) 

section. In the entrance region the values of MoR and KE increase for a uniform entrance velocity 
profile and approach an asymptotic constant value at large axial distances. 

The hydrodynamical results of the present work are compared with Shah4 and listed in Table I. 
As seen from this table, the results of the present computation are in reasonable agreement with 
the values of Shah. 

Thermal results 

Comparison with the previous results. The comparison of the fully developed Nu-values for 
6=9Oo with available analytical and numerical results in the open literature is listed in 
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Figure 10. Momentum rate and kinetic energy variation 
in the main flow direction 

0.010 0.100 1.000 
! / G z  

0.010 0.100 1.000 
1 /Gz 

0 010 0 100 1 000 
1 /Gz 

Figure 11. Local average Nusselt number Nu,  and aver- 
age Nusselt number Nu,,, versus reciprocal or Graetz 

number Gz 
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0.010 0.100 1.000 
1 /Gz  

1 

0.3 
0.010 0.100 1 000 

1 /Gz 

0.010 0.100 1.000 
1 /Gz 

a = 0.5 

a =  2 

Figure 12. Bulk temperature variation versus reciprocal of Graetz Figure 13. Isotherms at x/(D,/Re)=1.085 x lo-' 
number Gz for various aspect ratios for various aspect ratios (4 = 60") 
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Table 111. Comparison of the fully developed Nusselt number; 
computational and analytical results (4 =No) 

~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ 

u Present Aparecido and Asako Shah and 
work Cotta2’ et al.” London’ 

1 2.981 2.978 2.980 2,976 
3.391 2 3.393 3.392 - 

Table 111. The results of the present computations are in excellent agreement with the analytical 
results of Shah4 and of Aparecido and CottaZ5 and with the numerical results of Asako et al.” 

Nusselt numbers. Results for Nu, and Nu, for different aspect ratios are plotted in Figure 11 
with 4 as the curve parameter. As expected, Nu, and Nu, decrease with x and approach the fully 
developed values at large axial distances. As seen from the figures, Nu increases with increasing 4 
but increases as the aspect ratio is decreased. 

Bulk temperature. The bulk temperatures for different aspect ratios are plotted in Figure 12 
with 4 as the curve parameter. These curves are consistent with the results obtained for the 
Nusselt numbers. 

The isotherms at x/(D,Re)= 1.085 x are presented in Figure 13. 

CONCLUSIONS 

A finite volume numerical method in complex three-dimensional geometries using co-located 
variables and Cartesian velocity components was employed to numerically investigate the 
characteristics of the simultaneously developing laminar flow and convective heat transfer in the 
entrance region of a trapezoidal duct under axially constant wall temperature. The influence of 
various geometrical dimensions of the cross-section on heat transfer and fluid flow were studied. 
The fully developed values of the Nusselt numbers, friction factors, axial velocity, incremental 
pressure drops and momentum rate and kinetic energy correction factors are close to the 
available asymptotic results. Increasing the aspect ratio of the trapezoidal duct reduces the heat 
transfer and increases the incremental pressure drop. Increasing the duct angle 4 increases the 
heat transfer and decreases the incremental pressure drop. 
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APPENDIX: NOMENCLATURE 

A area 
a 
C P  specific heat 
Dh hydraulic diameter 
ei Cartesian unit base vector 
f friction factor 

coefficient in the discretized equations 
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F 

GZ 
gi 

f x  

ii 

h 
I 
K 
Kd 

K e  
KE 
k 
L 
m 
MoR 

N 
Nu 
P 
Pr 
Re 
S 
T 
Tb 

ui 

n 

u, 0, w 
Uin 

urn 

Greek symbols 

a 
r 
4 6 
0 
P 
V 

t i  

4 
P 

Y 

Subscripts 
NB 
E, P, W 
e, w, s 
n, 1, h 
fd 

expansion factor 
weighting factor 
Graetz number (= RePrD,/x) 
covariant base vector 
contravariant components of metric tensor 
heat transfer coefficient 
convective and diffusive fluxes 
incremental pressure drop 
momentum flux correction factor 
kinetic energy correction factor 
kinetic energy 
thermal conductivity 
length of the duct 
mass flow rate 
momentum rate 
normal vector 
number of control volumes in a cross-section 
Nusselt number (= hD,/k)  
pressure 
Prandtl number (= p c , / k )  
Reynolds number (= uinDh/vr umDh/v)  
source term 
temperature 
bulk temperature 
dimensionless velocity 
Cartesian velocity components 
uniform inlet velocity 
mean velocity 

aspect ratio (= height/top) 
exchange coefficient 
prefixes denoting a difference 
dimensionless fluid temperature for axially constant wall temperature 
dynamic viscosity 
kinematic viscosity 
co-ordinate tangent to the grid lines 
density 
angle of trapezoidal duct 
arbitrary dependent variable 

general neighbour grid point 
refer to the grid nodes 
refer to the control volume faces 
refer to the control volume faces 
refers to the fully developed conditions 
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3. 

4. 

5. 
6. 

7. 
8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 
23. 

24. 

25. 
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